NAEEM MUDDASAR

Ricercatore a tempo determinato Legge 240/10 - Tipo A 
Settore scientifico disciplinare di riferimento  (ING-INF/05)
Ateneo Universita telematica "Giustino Fortunato" - Benevento 
Struttura di afferenza

Orari di ricevimento

In sede: ogni martedì dalle 11:00 alle 13:00 Online: ogni martedì dalle 20:00 alle 21:00

Curriculum

INFORMAZIONI PERSONALI Luogo di nascita: Mandi Bahauddin (EE) Data: 20/06/1987 Residenza: Via Basilio Giannelli, 07 - 82100 Benevento (BN) Accademico 1. Titolo di studio: Dottorato di Ricerca in Ingegneria e Tecnologie dell'Informazione e della Comunicazione Periodo: Dal 01/11/2017 al 31/12/2020 Struttura: Università degli Studi di Napoli Parthenope, Napoli, Italia. 2. Titolo di studio: Laurea Magistrale in Telecomunicazioni e Reti Periodo: Dal 01/02/2013 al 15/05/2015 Struttura: Università di Iqra, Islamabad, Pakistan. Esperienza di ricerca 1. Struttura: Università Telematica Giustino Fortunato, Benevento Tipo di contratto: RTD Tipo A Ruolo: Ricercatore e Docente Tema dell'assegno di ricerca: Applicazioni sicure dell'Intelligenza Artificiale in ambito sanitario Periodo: dal 01/02/2023 - In corso 2. Struttura: CNR-ICAR Tipo di contratto: Assegno di ricerca Ruolo: Ricercatore Tema dell'assegno di ricerca: Applicazioni sicure dell'Intelligenza Artificiale in ambito sanitario Periodo: dal 27/01/2022 al 26/01/2023 3. Struttura: CNR-ICAR Tipo di contratto: Assegno di ricerca Ruolo: Ricercatore Tema dell'assegno di ricerca: Definizione e implementazione di sistemi e servizi di autoapprendimento tramite tecniche di Reinforcement Learning Pubblicazioni di riviste: 1. Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction ; Syed Tahir Hussain Rizvi, Neel kanwal, Muddasar Naeem,; Digital Signal Processing 2. Improving adherence to medication in an intelligent environment using reinforcement learning ; A Ismail, M Naeem, UB Kha lid, M Abbas ; Journal of Reliable Intelligent Environments 3. Advancing Patient Care with an Intelligent and Personalized Medication Engagement System ; Ahsan Ismail, Muddasar Naeem, Madiha Haider Syed, Antonio Coronato; Information 4. Defining a Metric-Driven Approach for Learning Hazardous Situations ; Mario Fiorino, Muddasar Naeem, Mario Ciampi, Antonio Coronato; Technologies , 2024 5. Enhancing Diagnostic Accuracy for Skin Cancer and COVID-19 Detection: A Comparative Study Using a Stacked Ensemble Method ; Hafza Qayyum, Syed Tahir Hussain Rizvi, Muddasar Naeem, Umamah bint Khalid, Musarat Abbas and Antonio Coronato; Technologies , 2024 6. Impact of AI-powered solutions in rehabilitation process: Recent improvements and future trends ; U Khalid, M Naeem, F Stasolla, MH Syed, M Abbas, A Coronato; International Journal of General Medicine, 943-969, 2024 7. A Hybrid Multi-Agent Reinforcement Learning Approach for Spectrum Sharing in Vehicular Networks ; Mansoor Jamal, Zaib Ullah, Muddasar Naeem, Musarat Abbas, Antonio Coronato ; Future Internet, 8. An AI-empowered infrastructure for risk prevention during medical examination; Syed Ihtesham Hussain Shah, Muddasar Naeem Giovanni Paragliola, Antonio Coronato , Mykola Pechenizkiy ; Expert Systems with Applications, 2023 9. Optimal User Scheduling in Multi Antenna System using Multi Agent Reinforcement Learning; Muddasar Naeem, Antonio Coronato, Zaib Ullah Sajid Bashir, Giovanni Paragliola; Sensors, 2022 10. An intelligent environment for preventing medication errors in home treatment ; Mario Ciampi, Antonio Coronato, Muddasar Naeem, Stefano Silvestri; Expert Systems with Applications , 2022 11. An AI-Empowered Home-Infrastructure to Minimize Medication Errors ; Muddasar Naeem, Antonio Coronato; Journal of Sensor and Actuator Networks , 2022 12. Learning and Assessing Optimal Dynamic Treatment Regimes Through Cooperative Imitation Learning; Syed Ihtesham Hussain Shah, Antonio Coronato, Muddasar Naeem, Giuseppe Di Pietro IEEE Access 13. Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems ; Muddasar Naeem, Giuseppe De Pietro and Antonio Coronato; Sensors 14. A reinforcement learning and deep learning based intelligent system for the support of impaired patients in home treatment ; Muddasar Naeem, Giovanni Paragliola, Antonio Coronato; Expert Systems with Applications 15. Reinforcement learning for intelligent healthcare applications: A survey ; Antonio Coronato, Muddasar Naeem, Giuseppe De Pietro, Giovanni Paragliola; Artificial Intelligence in Medicine , 2020 16. A Gentle Introduction to Reinforcement Learning and its Application in Different Fields ; Muddasar Naeem, STH Rizvi, Antonio Coronato; IEEE Access 17. A Risk Management for Nuclear Medical Department using Reinforcement Learning ; Giovanni Paragliola, Muddasar Naeem; Journal of Reliable Intelligent Environments 18. A Near-Optimal Scheduling Algorithm for Efficient Radio Resource Management in Multi-user MIMO Systems ; Muddasar Naeem, Sajid Bashir, Zaib Ullah, Aqeel A Syed ; Wireless Personal Communication Pubblicazioni della conferenza: 1. Sensor-Driven Autonomous Vehicles: Junction Safety using AI and Obstacle Avoidance , MT Zahid, D Khan, U Bint Khalid, Z Ullah, M Naeem, M Abbas, 2024 5th International Conference on Innovative Computing (ICIC), 1-6 2. Enhancing text classification using bert: a transfer learning approach , H Zaman-Khan, M Naeem, R Guarasci, U Bint-Khalid, M Esposito, Computación y Sistemas 28 (4), 2279-2296 3. Integrating Artificial Intelligence Techniques in Cell Mechanics , M Naeem, M Fiorino, P Addabbo, A Coronato, FEDCSIS 8-11 Sep Serbia 2024 4. RL-BASED MODEL FOR IMPROVING HUMAN TASK MANAGEMENT PERFORMANCE; Muddasar Naeem, Valeriano Fabris, Antonio Coronato; 18th International Conference on Intelligent Environments, IE 2022 (Conference paper, Scopus) 5. Inverse Reinforcement Learning based Approach for Investigating Optimal Dynamic Treatment Regimen; Syed Ihtesham Hussain Shah, Antonio Coronato, Muddasar Naeem; 18th International Conference on Intelligent Environments, IE 2022 (Conference paper, Scopus) 6. Ambient Intelligence for Home Medical Treatment Error Prevention ; Antonio Coronato, Muddasar Naeem; 17th International Conference on Intelligent Environments, IE 2021 (Conference paper, Scopus) ISBN: 978-166540346-7 DOI: 10.1109/IE51775.2021.9486450 7. A self-learning autonomous and intelligent system for the reduction of medication errors in home treatments ; Rosamaria Donnici, Antonio Coronato, Muddasar Naeem; Workshop Proceedings of the 17th International Conference on Intelligent Environments, IE 2021 (Book chapter, Scopus) ISBN: 978-164368187-0, 978-164368186-3 DOI: 10.3233/AISE210093 8. Prediction of Breast Cancer Using AI-based Methods ; Sanam Amir, Aqsa Rahim, Sajid Bashir, Muddasar Naeem; 17th International Conference on Intelligent Environments, IE 2021 (Conference paper, Scopus) ISBN: 978-166540346-7 DOI: 10.3233/AISE210098 9. S elf Learning of News Category Using AI Techniques Prevention ; Zara Hayat, Aqsa Rahim, Sajid Bashir, Muddasar Naeem; 17th International Conference on Intelligent Environments, IE 2021 (Conference paper, Scopus) ISBN: 978-166540346-7 DOI: 10.3233/AISE210094 10. A CNN based monitoring system to minimize medication errors during treatment process at home ; Muddasar Naeem, Giovanni Paragliola, Antonio Coronato, Giuseppe De PIetro; International Conference on Applications of Intelligent Systems, APPIS 2020 (Conference paper, Scopus) ISBN: 978-145037630-3 DOI: 10.1145/3378184.3378223 11. A reinforcement learning and iot based system to assist patients with disabilities ; Muddasar Naeem, Giovanni Paragliola, Antonio Coronato, Giuseppe De PIetro; International Conference on Internet of Things, Big Data and Security, IoTBDS 2020 (Conference paper, Scopus) ISBN: 978-989758426-8 https://www.scitepress.org/Papers/2020/97838/97838.pdf 12. A Reinforcement Learning Based Intelligent System for the Healthcare Treatment Assistance of Patients with Disabilities ; Antonio Coronato, Muddasar Naeem; International Symposium on Pervasive Systems, Algorithms and Networks; 2019 (Conference proceedings, Scopus) ISBN: 978-3-030-30142-2 https://doi.org/10.1007/978-3-030-30143-9_2 13. Adaptive Treatment Assisting System for Patients Using Machine Learning ; Muddasar Naeem, Antonio Coronato, Giovanni Paragliola; International Conference on Social Networks Analysis, Management and Security (SNAMS); 2019 (Proceedings paper, WoS) ISBN: 978-1-7281-2946-4 https://doi.org/10.1109/SNAMS.2019.8931857 14. A Reinforcement Learning-Based Approach for the Risk Management of e-Health Environments: A Case Study ; Giovanni Paragliola, Antonio Coronato, Muddasar Naeem, Giuseppe De Pietro; 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS); 2018 (Proceedings paper, WoS) ISBN: 978-1-5386-9385-8 https://doi.org/10.1109/SITIS.2018.00114 15. Modified Leakage Based User Selection for MU-MIMO Systems ; Muddasar Naeem, Muhammad Usman, Sajid Bashir, Aqeel A Syed; 13th International Conference on Frontiers of Information Technology (FIT); 2015 (Proceedings paper, WoS) https://doi.org/ 10.1109/FIT.2015.25 16. Performance comparison of scheduling algorithms for MU-MIMO systems ; Muddasar Naeem, Muhammad Usman, Sajid Bashir, Aqeel A Syed; 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST) ; 2016 (Proceedings paper, WoS) ISSN: 2151-1411 https://doi.org/ 10.1109/IBCAST.2016.7429939 17. Modified SINR Based User Selection for MU-MIMO Systems ; Muddasar Naeem, Muhammad Usman, Sajid Bashir, Aqeel A Syed; International Conference on Information and Communication Technologies (ICICT); 2015 (Proceedings paper, WoS) https://doi.org/ 10.1109/ICICT.2015.7469587